Molecular and Functional Characterization of Hv1 Proton Channel in Human Granulocytes

نویسندگان

  • Gábor L. Petheő
  • Anna Orient
  • Mónika Baráth
  • István Kovács
  • Bence Réthi
  • Árpád Lányi
  • Anikó Rajki
  • Éva Rajnavölgyi
  • Miklós Geiszt
چکیده

Voltage-gated proton current (I(Hv)) has been characterized in several cell types, but the majority of the data was collected in phagocytes, especially in human granulocytes. The prevailing view about the role of I(Hv) in phagocytes is that it is an essential supporter of the intense and sustained activity of Nox2 (the core enzyme of the phagocyte NADPH oxidase complex) during respiratory burst. Recently H(v)1, a voltage-gated proton channel, was cloned, and leukocytes from H(v)1 knockout mice display impaired respiratory burst. On the other hand, hardly anything is known about H(v)1 in human granulocytes. Using qPCR and a self made antibody, we detected a significant amount of H(v)1 in human eosinophil and neutrophil granulocytes and in PLB-985 leukemia cells. Using different crosslinking agents and detergents in reducing and non-reducing PAGE, significant expression of H(v)1 homodimers, but not that of higher-order multimers, could be detected in granulocytes. Results of subcellular fractionation and confocal imaging indicate that H(v)1 is resident in both plasmalemmal and granular membrane compartments of resting neutrophils. Furthermore, it is also demonstrated that H(v)1 accumulates in phagosome wall during zymosan engulfment together with, but independently of Nox2. During granulocytic differentiation early and parallel upregulation of H(v)1 and Nox2 expression was observed in PLB-985 cells. The upregulation of H(v)1 or Nox2 expression did not require the normal expression of the other molecule. Using RNA interference, we obtained strong correlation between H(v)1 expression and I(Hv) density in PLB-985 cells. It is also demonstrated that a massive reduction in H(v)1 expression can limit the Nox2 mediated superoxide production of PLB-985 granulocytes. In summary, beside monomers native H(v)1 forms stable proton channel dimer in resting and activated human granulocytes. The expression pattern of H(v)1 in granulocytes is optimized to support intense NADPH oxidase activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular and functional characterization of the voltage‐gated proton channel in zebrafish neutrophils

Voltage-gated proton channels (Hv1/VSOP) are expressed in various cells types, including phagocytes, and are involved in diverse physiological processes. Although hvcn1, the gene encoding Hv1, has been identified across a wide range of species, most of the knowledge about its physiological function and expression profile is limited to mammals. In this study, we investigated the basic properties...

متن کامل

Molecular determinants of Hv1 proton channel inhibition by guanidine derivatives.

The voltage-gated proton channel Hv1 plays important roles in proton extrusion, pH homeostasis, and production of reactive oxygen species in a variety of cell types. Excessive Hv1 activity increases proliferation and invasiveness in cancer cells and worsens brain damage in ischemic stroke. The channel is composed of two subunits, each containing a proton-permeable voltage-sensing domain (VSD) a...

متن کامل

Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst.

Granulocytes generate a "respiratory burst" of NADPH oxidase-dependent superoxide anion (O(2)(-*)) production that is required for efficient clearance of bacterial pathogens. Hv1 mediates a voltage-gated H(+) channel activity that is proposed to serve a charge-balancing role in granulocytic phagocytes such as neutrophils and eosinophils. Using mice in which the gene encoding Hv1 is replaced by ...

متن کامل

Acid Extrusion from Human Spermatozoa Is Mediated by Flagellar Voltage-Gated Proton Channel

Human spermatozoa are quiescent in the male reproductive system and must undergo activation once introduced into the female reproductive tract. This process is known to require alkalinization of sperm cytoplasm, but the mechanism responsible for transmembrane proton extrusion has remained unknown because of the inability to measure membrane conductance in human sperm. Here, by successfully patc...

متن کامل

Inhibition of CatSper and Hv1 Channels and NOX5 Enzyme Affect Progesterone-Induced Increase of Intracellular Calcium Concentration and ROS Generation in Human Sperm

Background: Normal sperm function depends on appropriate intracellular calcium (Cai2+) and reactive oxygen species (ROS) levels. Calcium activates NADPH oxidase-5 (NOX5) that leads to ROS generation. The calcium channel of sperm (CatSper) is activated by progesterone and intracellular alkalization. Herein, the interactive role of CatSper, Hv1 channels, and NOX5 enzyme on Cai2+ and ROS generatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010